Monitoring Self-Assembly and Ligand Exchange of PbS Nanocrystal Superlattices at the Liquid/Air Interface in Real Time.

نویسندگان

  • Santanu Maiti
  • Alexander André
  • Rupak Banerjee
  • Jan Hagenlocher
  • Oleg Konovalov
  • Frank Schreiber
  • Marcus Scheele
چکیده

We investigate in situ the structural changes during self-assembly of PbS nanocrystals from colloidal solution into superlattices, solvent evaporation, and ligand exchange at the acetonitrile/air interface by grazing incidence small-angle X-ray scattering (GISAXS). We simulate and fit the diffraction peaks under the distorted wave Born approximation (DWBA) to determine the lattice parameters. We observe a continuous isotropic contraction of the superlattice in two different assembly steps, preserving the body-centered cubic lattice with an overall decrease in the lattice constants of 11%. We argue that the first contraction period is due to a combination of solvent evaporation/annealing and capillary forces acting on the superlattice, whereas the second period is dominated by the effect of replacing oleic acid on the nanocrystal surface with the short and rigid cross-linker tetrathiafulvalene dicarboxylate. This work provides guidelines for optimized ligand exchange conditions and highlights the structural particularities arising from assembling NCs on liquid surfaces.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Site-Specific Ligand Interactions Favor the Tetragonal Distortion of PbS Nanocrystal Superlattices.

We analyze the structure and morphology of mesocrystalline, body-centered tetragonal (bct) superlattices of PbS nanocrystals functionalized with oleic acid. On the basis of combined scattering and real space imaging, we derive a three-dimensional (3D) model of the superlattice and show that the bct structure benefits from a balanced combination of {100}PbS-{100}PbS and {111}PbS-{111}PbS interac...

متن کامل

Surface Functionalization with Copper Tetraaminophthalocyanine Enables Efficient Charge Transport in Indium Tin Oxide Nanocrystal Thin Films.

Macroscopic superlattices of tin-doped indium oxide (ITO) nanocrystals (NCs) are prepared by self-assembly at the air/liquid interface followed by simultaneous ligand exchange with the organic semiconductor copper 4,4',4″,4‴-tetraaminophthalocyanine (Cu4APc). By using X-ray photoelectron spectroscopy (XPS), grazing-incidence small-angle X-ray scattering (GISAXS), and ultraviolet-visible-near-in...

متن کامل

Three-dimensional nanocrystal superlattices grown in nanoliter microfluidic plugs.

We studied the self-assembly of inorganic nanocrystals (NCs) confined inside nanoliter droplets (plugs) into long-range ordered superlattices. We showed that a capillary microfluidic platform can be used for the optimization of growth conditions for NC superlattices and can provide insights into the kinetics of the NC assembly process. The utility of our approach was demonstrated by growing lar...

متن کامل

Kinetically driven self assembly of highly ordered nanoparticle monolayers.

When a drop of a colloidal solution of nanoparticles dries on a surface, it leaves behind coffee-stain-like rings of material with lace-like patterns or clumps of particles in the interior. These non-uniform mass distributions are manifestations of far-from-equilibrium effects, such as fluid flows and solvent fluctuations during late-stage drying. However, recently a strikingly different drying...

متن کامل

Tolerance to structural disorder and tunable mechanical behavior in self-assembled superlattices of polymer-grafted nanocrystals.

Large, freestanding membranes with remarkably high elastic modulus (>10 GPa) have been fabricated through the self-assembly of ligand-stabilized inorganic nanocrystals, even though these nanocrystals are connected only by soft organic ligands (e.g., dodecanethiol or DNA) that are not cross-linked or entangled. Recent developments in the synthesis of polymer-grafted nanocrystals have greatly exp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The journal of physical chemistry letters

دوره 9 4  شماره 

صفحات  -

تاریخ انتشار 2018